If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-12y-18=0
a = 5; b = -12; c = -18;
Δ = b2-4ac
Δ = -122-4·5·(-18)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{14}}{2*5}=\frac{12-6\sqrt{14}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{14}}{2*5}=\frac{12+6\sqrt{14}}{10} $
| -4d+2(3+d)=16 | | 8w^2-6w=0 | | -16(x+1)=4(x+9) | | 8x-3=15x-1 | | 17x-7=61 | | -7.4p−13.09=-6.3p | | 135=-24c3-c6 | | -9(n=6)= | | 3c=79.49-c | | 135=-24c3-c | | Y=-8x-4.X=1 | | 3.6w=1.6w | | 3t=20-17t | | 12z-45=1 | | x2–8x–1=0 | | 3*c=79.49-c | | -7(-9x-22=(-665) | | g-21/2=7 | | 66÷w=11 | | -2p=9+p | | 3x×4=12x= | | x-31/8=21 | | 21h^2+41h-2=0 | | 11x-15=-81 | | -u-8=-2u | | 9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f9f=949854 | | 4+7x-84=-38 | | 4x−1=6x+4 | | n+(n+1)=55 | | .25(x-12)+2x=15 | | 30n-7=14 | | X2=15x-54 |